If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-20=0
a = 3; b = -10; c = -20;
Δ = b2-4ac
Δ = -102-4·3·(-20)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{85}}{2*3}=\frac{10-2\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{85}}{2*3}=\frac{10+2\sqrt{85}}{6} $
| -x(5x-8)=11-x | | 3y/2-5=y/2+3 | | 7^y+3=12 | | 5x=28*8 | | 2^x+5=64 | | 60-(3c+4)=49 | | -3k-12-k=8 | | 2x+5=64 | | 3k^2-k-10=0 | | 3(2x-10)+2(3x-2)=2 | | (5x-5)=40 | | 9n-3=24+8n | | 2/3x+2=4/2/3 | | 9,7x=10x | | k-3-2k=-4-2k | | 5x+9-2/x=0 | | 5x=35*8 | | 9,7=10x | | 3z^2+27=0 | | 7x-5=-3x-5 | | 10.5-x+31/3x=2 | | 20/36=e/90 | | -11+x=-7-8(-x | | 7/11=c/165 | | 45=(2x+5) | | (X+95)+(4x-10)=180 | | 10.5-x+31/3×=2 | | x5=-1 | | (y-1)/7=(3y-7)/5 | | 196=-2x+4(-7x-11) | | 6+3x=10+2x+6 | | 0.5m=3,5 |